EchoVib

Synapseml: Synapse.ML.Featurize.Featurize Class Reference

Featurize implements Featurize More...

Inheritance graph [legend] Collaboration graph [legend]

Featurize implements Featurize

◆ Featurize() [1/2]

Synapse.ML.Featurize.Featurize.Featurize()
inline

◆ Featurize() [2/2]

Synapse.ML.Featurize.Featurize.Featurize(string uid)
inline

Creates a Featurize with a UID that is used to give the Featurize a unique ID.

Parameters
uidAn immutable unique ID for the object and its derivatives.
override PipelineModel Synapse.ML.Featurize.Featurize.Fit(DataFrame dataset)

Fits a model to the input data.

Parameters
datasetThe DataFrame to fit the model to.
ReturnsPipelineModel

◆ GetImputeMissing()

bool Synapse.ML.Featurize.Featurize.GetImputeMissing()

Gets imputeMissing value

ReturnsimputeMissing: Whether to impute missing values

◆ GetInputCols()

string [] Synapse.ML.Featurize.Featurize.GetInputCols()

Gets inputCols value

ReturnsinputCols: The names of the input columns

◆ GetNumFeatures()

int Synapse.ML.Featurize.Featurize.GetNumFeatures()

Gets numFeatures value

ReturnsnumFeatures: Number of features to hash string columns to

◆ GetOneHotEncodeCategoricals()

bool Synapse.ML.Featurize.Featurize.GetOneHotEncodeCategoricals()

Gets oneHotEncodeCategoricals value

ReturnsoneHotEncodeCategoricals: One-hot encode categorical columns

◆ GetOutputCol()

string Synapse.ML.Featurize.Featurize.GetOutputCol()

Gets outputCol value

ReturnsoutputCol: The name of the output column
static Featurize Synapse.ML.Featurize.Featurize.Load(string path)
static
JavaMLReader<Featurize> Synapse.ML.Featurize.Featurize.Read()

Get the corresponding JavaMLReader instance.

Returnsan JavaMLReader<Featurize> instance for this ML instance.
void Synapse.ML.Featurize.Featurize.Save(string path)

Saves the object so that it can be loaded later using Load. Note that these objects can be shared with Scala by Loading or Saving in Scala.

Parameters
pathThe path to save the object to

◆ SetImputeMissing()

Featurize Synapse.ML.Featurize.Featurize.SetImputeMissing(bool value)

Sets value for imputeMissing

Parameters
valueWhether to impute missing values
ReturnsNew Featurize object

◆ SetInputCols()

Featurize Synapse.ML.Featurize.Featurize.SetInputCols(string [] value)

Sets value for inputCols

Parameters
valueThe names of the input columns
ReturnsNew Featurize object

◆ SetNumFeatures()

Featurize Synapse.ML.Featurize.Featurize.SetNumFeatures(int value)

Sets value for numFeatures

Parameters
valueNumber of features to hash string columns to
ReturnsNew Featurize object

◆ SetOneHotEncodeCategoricals()

Featurize Synapse.ML.Featurize.Featurize.SetOneHotEncodeCategoricals(bool value)

Sets value for oneHotEncodeCategoricals

Parameters
valueOne-hot encode categorical columns
ReturnsNew Featurize object

◆ SetOutputCol()

Featurize Synapse.ML.Featurize.Featurize.SetOutputCol(string value)

Sets value for outputCol

Parameters
valueThe name of the output column
ReturnsNew Featurize object The documentation for this class was generated from the following file:
  • synapse/ml/featurize/Featurize.cs

ncG1vNJzZmilnaHAsa3RpGWbpJ%2BXe6S70Z5lsKGemby4v42nnK1nlKSwtHuPZ2hpZmBksbDAzZ6raJuclsC0n9inmKmrlZR%2BoH2shZZql2F7sqLA1Kugs52PZqxyksSaq66qma%2Byb7TTpqM%3D

Zora Stowers

Update: 2024-06-13